高污泥濃度與生物脫氮除磷
時間:2007-07-05 來源: 作者:趙夢開
生物反硝化作用即為在缺氧條件下反硝化細菌利用硝酸鹽中的離子氧分解有機物的過程,硝酸鹽即被還原為N2,完成脫氮過程。反硝化過程中的反硝化細菌是大量存在于污水處理系統中的異氧型兼性細菌,在有氧存在條件下,反硝化細菌利用氧進行呼吸、氧化分解有機物。在無分子氧的條件下,同時存在硝酸和亞硝酸離子時,它們能用這些離子中的氧進行呼吸,使有機質氧化分解。反硝化細菌能夠利用各種各樣的有機基質作為反硝化過程中的電子供體,其中包括:碳水化合物、有機酸類、醇類以及甚至像烷烴類、苯酸鹽類和其它的苯衍生物這些化合物,它們往往是廢水的主要組分。影響反硝化速率的因素較多,包括PH值、溫度、DO、碳氮比、污泥濃度等,實際污水處理廠在工藝的運行中只能對DO、污泥濃度等參數進行控制。碳氮比雖然是反硝化反應中最重要的影響因素但其和來水水質有很大關系一般實際運行中很難控制。
a. 反硝化反應過程中要求在無分子氧存在的條件下反硝化細菌才能利用硝酸鹽及亞硝酸鹽中的離子氧分解有機物。之前提到,高污泥濃度的生物系統在硝化過程中可適當降低溶解氧值,同時保持硝化效果,因此使硝化末端降低溶解氧可以有效的減少硝酸鹽回流液中所攜帶的溶解氧含量,降低分子氧在缺氧區對反硝化進程的影響,提高反硝化菌利用碳源的反硝化能力。同時高污泥濃度自身內源代謝好氧量也相對較強,可以進一步消耗回流及缺氧段中的溶解氧。再有非常高的污泥濃度會改變混合液的粘滯性,增大擴散阻力,從而也使回流攜帶的溶解氧降低,在一些使用明渠作為回流通道的處理工藝中可以減小回流跌落的充氧量?傊呶蹪舛葘τ诮档蛯嶋H工藝運行中反硝化階段的DO值有較大作用。
b. 由于反硝化細菌是異氧型兼性細菌在污水處理系統大量存在,提高系統中的污泥濃度可有效的提高反硝化細菌的濃度。反硝化反應速度與硝酸鹽亞硝酸鹽濃度基本無關,而與反硝化細菌的濃度呈一級反應。因此在實際工藝運行中高污泥濃度可以縮短反硝化的時間減小缺氧段的有效容積。在缺氧段有效容積一定的件下,高污泥濃度的反硝化反應可以更好的利用有機基質中相對較難降解的有機物作為碳源進行反硝化反應。這一點對于脫氮除磷工藝,尤其C源不足的情況尤為重要。
c. 高污泥濃度其微生物菌膠團直徑相對較大,在硝化反應過程中受溶解氧低的影響,氧的壓力梯度較小,菌膠團內部容易形成缺氧環境從而發生反硝化反應。所以高污泥濃度可以促進同程反硝化。
四、污泥濃度與生物除磷
生物除磷的關鍵點是提高聚磷菌在活性污泥系統中所占比例,同時在系統運行過程中大量增長繁殖,在排出系統時聚磷菌體內含磷量維持在一個較高水平。
為了提高系統中聚磷菌所占活性污泥的比例就要為聚磷菌營造更優越的適合其生長繁殖的環境及水力條件,即工藝流程上有良好的厭氧、好氧環境,厭氧區的環境因素控制對聚磷菌的生長繁殖,以及除磷功能的實現尤為重要。厭氧區的高污泥濃度對于聚磷菌更為有利。
a.
高污泥濃度在厭氧區其聚磷菌濃度也相應較高,釋磷的微生物量增多,后續好氧吸磷微生物量也就會相應增加,增大了系統整體的除磷作用。
b. 厭氧區聚磷菌吸收VFA釋磷,同時厭氧區在高污泥濃度的條件下可作為系統的厭氧酸化段,對水中的高分子難降解有機物起到厭氧水解作用,聚磷菌釋磷過程中釋放的能量,可供聚磷菌主動吸收乙酸、H+、等使之形成PHB形式貯存在菌體內,從而促進有機物的酸化過程,提高污水的可生化性增大后續處理過程中的反硝化反應所用碳源。
五、結束
總之在脫氮除磷的污水處理工藝中在處理設施充足情況下應適當提高生物池內的污泥濃度,增強系統脫氮除磷能力。
a. 高污泥濃度可提高處理工藝各單元的的反應速率,減小所需的反應時間。
b. 高污泥濃度其菌膠團直徑相對較高,其菌膠團內更容易形成缺氧反硝化,可能會發生同程反硝化。
c. 高污泥濃度可有效降低回流中溶解氧含量,提高厭氧有效釋磷、反硝化脫氮的有機物利用率。
d. 高污泥濃度其相應具有較高的泥齡,生物系統內的優勢菌種一般不受泥齡限制。因此在脫氮除磷工藝中各類主要功能細菌在適應脫氮除磷環境時形成優勢菌種。
e. 高污泥濃度在厭氧階段的水解酸化作用,有利于后續反硝化作用時有機物的更好吸收利用。
當然高污泥濃度對污水處理廠也同樣存在不利的影響因素,如曝氣時擴散阻力增大,供氧的利用率下降;增大了二沉池的污泥負荷。同時在生物脫氮除磷過程中排泥是除磷的必需過程,排泥量的多少很大程度上影響系統的除磷效果,因此在污水廠運行時,應保證每天一定量排泥除磷的前提下,采用高污泥濃度運行。
參考文獻
[1]李軍,楊秀山
彭永臻.微生物與水處理工程.化學工業出版社
2002.
[2]張自杰,林榮忱
金儒霖,排水工程
中國建筑工業出版社
2003。