您的位置:首页 >> 熱點專題 >> 其它專題 >> 工業廢水處理 >> 

IC厭氧處理新技術的應用進展

時間:2007-02-06 來源: 作者:甘縣輝 汪永輝 黃莉

    1  引言

    廢水厭氧生物技術由于其巨大的處理能力和潛在的應用前景,一直是水處理技術研究的熱點。從傳統的厭氧接觸工藝發展到現今廣泛流行的UASB工藝,廢水厭氧處理技術已日趨成熟。隨著生產發展與資源、能耗、占地等因素間矛盾的進一步突出,現有的厭氧工藝又面臨著嚴峻的挑戰,尤其是如何處理生產發展帶來的大量高濃度有機廢水,使得研發技術經濟更優化的厭氧工藝非常必要[1]。內循環厭氧處理技術(以下簡稱IC厭氧技術)就是在這一背景下產生的高效處理技術,它是20世紀80年代中期由荷蘭PAQUES公司研發成功,并推入國際廢水處理工程市場,目前已成功應用于土豆加工、啤酒、食品和檸檬酸等廢水處理中[2]。實踐證明,該技術去除有機物的能力遠遠超過普通厭氧處理技術(如UASB),而且IC反應器容積小、投資少、占地省、運行穩定,是一種值得推廣的高效厭氧處理技術。

    2  現有厭氧處理技術的局限性

    厭氧處理是廢水生物處理技術的一種方法,要提高厭氧處理速率和效率,除了要提供給微生物一個良好的生長環境外,保持反應器內高的污泥濃度和良好的傳質效果也是2個關鍵性舉措。

    以厭氧接觸工藝為代表的第1代厭氧反應器,污泥停留時間(SRT)和水力停留時間(HRT)大體相同,反應器內污泥濃度較低,處理效果差[3]。為了達到較好的處理效果,廢水在反應器內通常要停留幾天到幾十天之久。

    UASB工藝為代表的第2代厭氧反應器,依靠顆粒污泥的形成和三相分離器的作用,使污泥在反應器中滯留,實現了SRT>HRT,從而提高了反應器內污泥濃度,但是反應器的傳質過程并不理想。要改善傳質效果,最有效的方法就是提高表面水力負荷和表面產氣負荷[4]。然而高負荷產生的劇烈攪動又會使反應器內污泥處于完全膨脹狀態,使原本SRT>HRTSRT=HRT方向轉變,污泥過量流失,處理效果變差。

    3  IC反應器工作原理及技術優點

    3.1 IC反應器工作原理

    IC反應器基本構造如圖1所示,它相似由2UASB反應器串聯而成。按功能劃分,反應器由下而上共分為5個區:混合區、第1厭氧區、第2厭氧區、沉淀區和氣液分離區。

    混合區:反應器底部進水、顆粒污泥和氣液分離區回流的泥水混合物有效地在此區混合。

    1厭氧區:混合區形成的泥水混合物進入該區,在高濃度污泥作用下,大部分有機物轉化為沼氣。混合液上升流和沼氣的劇烈擾動使該反應區內污泥呈膨脹和流化狀態,加強了泥水表面接觸,污泥由此而保持著高的活性。隨著沼氣產量的增多,一部分泥水混合物被沼氣提升至頂部的氣液分離區。

    氣液分離區:被提升的混合物中的沼氣在此與泥水分離并導出處理系統,泥水混合物則沿著回流管返回到最下端的混合區,與反應器底部的污泥和進水充分混合,實現了混合液的內部循環。

    2厭氧區:經第1厭氧區處理后的廢水,除一部分被沼氣提升外,其余的都通過三相分離器進入第2厭氧區。該區污泥濃度較低,且廢水中大部分有機物已在第1厭氧區被降解,因此沼氣產生量較少。沼氣通過沼氣管導入氣液分離區,對第2厭氧區的擾動很小,這為污泥的停留提供了有利條件。

    沉淀區:第2厭氧區的泥水混合物在沉淀區進行固液分離,上清液由出水管排走,沉淀的顆粒污泥返回第2厭氧區污泥床。

    IC反應器工作原理中可見,反應器通過2層三相分離器來實現SRT>HRT,獲得高污泥濃度;通過大量沼氣和內循環的劇烈擾動,使泥水充分接觸,獲得良好的傳質效果。

    3.2  IC工藝技術優點

上一頁 頁碼:[1 2 3 >>] 下一頁 共3頁

打印】 【網站論壇】 【字體: 】 【發表評論】 【關閉

微水會

第十六屆城市發展與規劃大會

推薦書籍


    《高濃度有機工業廢水處理技術》
    作者:任南琪
    內容簡介:

    《水的再生與回用》
    作者:【美】林宜獅
    內容簡介:

合作邀請:010-88585381-805

免费a级毛片18以上观看精品